Primitive Divisors of Quadratic Polynomial Sequences

نویسندگان

  • G. EVEREST
  • S. STEVENS
  • D. TAMSETT
  • T. WARD
چکیده

We consider primitive divisors of terms of integer sequences defined by quadratic polynomials. Apart from some small counterexamples, when a term has a primitive divisor, that primitive divisor is unique. It seems likely that the number of terms with a primitive divisor has a natural density. We discuss two heuristic arguments to suggest a value for that density, one using recent advances made about the distribution of roots of polynomial congruences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Prime Divisors in Polynomial Arithmetic Dynamics

The question of which terms of a recurrence sequence fail to have primitive prime divisors has been significantly studied for several classes of linear recurrence sequences and for elliptic divisibility sequences. In this paper, we consider the question for sequences generated by the iteration of a polynomial. For two classes of polynomials f(x) ∈ Z[x] and initial values a1 ∈ Z, we show that th...

متن کامل

Primitive Prime Divisors of First-Order Polynomial Recurrence Sequences

The question of which terms of a recurrence sequence fail to have primitive prime divisors has been significantly studied for several classes of linear recurrence sequences and for elliptic divisibility sequences. In this paper, we consider the question for sequences generated by the iteration of a polynomial. For two classes of polynomials f(x) ∈ Z[x] and initial values a1 ∈ Z, we show that th...

متن کامل

Algebraic Divisibility Sequences over Function Fields

In this note we study the existence of primes and of primitive divisors in function field analogues of classical divisibility sequences. Under various hypotheses, we prove that Lucas sequences and elliptic divisibility sequences over function fields defined over number fields contain infinitely many irreducible elements. We also prove that an elliptic divisibility sequence over a function field...

متن کامل

Course 311: Michaelmas Term 2005 Part I: Topics in Number Theory

1 Topics in Number Theory 2 1.1 Subgroups of the Integers . . . . . . . . . . . . . . . . . . . . 2 1.2 Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . 2 1.3 The Euclidean Algorithm . . . . . . . . . . . . . . . . . . . . . 3 1.4 Prime Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 The Fundamental Theorem of Arithmetic . . . . . . . . . . . . 5 1.6 The Infini...

متن کامل

On primitive roots of 1 mod p k, divisors of p 2 − 1, Wieferich primes and quadratic analysis mod p 3

On primitive roots of 1 mod p k , divisors of p 2 − 1 , Wieferich primes and quadratic analysis mod p Abstract Primitive roots of 1 mod p k (k > 2 and odd prime p) are sought, in cyclic units group G k ≡ A k B k mod p k , coprime to p, of order (p − 1)p k−1. 'Core' subgroup A k has order p − 1 independent of precision k, and 'extension' subgroup B k of all p k−1 residues 1 mod p is generated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004